TRANSFORMATION OF A LINEAR DIFFERENTIAL EQUATION WITH POLYNOMIAL COEFFICIENTS INTO AN INTEGRAL EQUATION WITH THE AID OF OPERATIONAL CALCULUS

(PEREKHOD OT LINEINOGO DIPFERENTSIAL' NOGO URAVNENIIA S POLINOMIAL'NYMI K KOEFFITSIENTAMI I INTEGEAL' NOMY URAVNENIIU PRI POMOSHCBI OPERATSIONNOGO ISCHISLENIIA)

$$
\begin{gathered}
\text { PMM Vol.22. No.4. } 1958 \text {, pp.553-554 } \\
\text { V.V. KARAMYSHKIN } \\
\text { (Moscow) } \\
\text { (Received } 11 \text { December 1957) }
\end{gathered}
$$

Suppose the following homogeneous linear equation is given:

$$
\begin{equation*}
p_{11}(t) \frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\ldots+p_{n}(t) y=0 \tag{1}
\end{equation*}
$$

where, for the sake of simplicity, $p_{0}(t), p_{1}(t), \ldots, p_{n}(t)$ denote polynomials of order not higher than the second.

According to the [complex] differentiation theorem of the transform

$$
t^{m} y(\ell) \longleftarrow(-1)^{m} p \frac{d^{m}}{d p^{m}} \cdot\left[\frac{Y^{Y}(p)}{p}\right]
$$

and after operational transformation, equation (1) corresponds to the following differential equation of second order:

$$
\begin{equation*}
p P^{\prime}(p) \frac{d^{2}}{d p^{2}}\left[\frac{Y(p)}{p}\right]-p Q(p) \frac{d}{d p}\left[\frac{Y(p)}{\mu}\right]+R(p) Y(p)=p S(p) \tag{2}
\end{equation*}
$$

where $P(p), Q(p), R(p)$ are polynomials of order $\leqslant n$, and $S(p)$ is a polynomial containing the initial values.

Let, for instance, $R(p)$ be a polynomial of order not less than the orders of polynomials $P(p)$ and $Q(p)$; then from (2) it follows that

$$
\begin{equation*}
Y(p)=\frac{p S(p)}{R(p)}-\frac{Q(p)}{l(p)} p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]-\frac{P(p)}{R(p)} p \frac{d^{2}}{d p^{2}}\left[\frac{Y(p)}{p}\right] \tag{3}
\end{equation*}
$$

The terms of the relation (3) will be inverted separately. Assume, for the sake of simplicity, that the roots of $R(p)$ are simple. Then

$$
\begin{align*}
& Y(p) \rightarrow \div y(t), \frac{p \mathscr{S}(p)}{h(p)}=\sum_{r} k_{r} \frac{p}{p-p_{r}} \div-\sum_{r} k_{r} e^{p_{r} t} \tag{4}\\
& Y(p)=p \int_{0}^{\infty} y(t) e^{-p t} d t, p \frac{d}{d p} \frac{Y(p)}{p}=p \int_{0}^{\infty}(-t) y(t) e^{-p t} d t
\end{align*}
$$

Expand $\frac{Q(p)}{R(p)}$ into simple fractions:

Then

$$
\frac{Q(p)}{M(p)}=A_{0}+\sum_{r} \frac{A_{r}}{p-p_{r}}
$$

$$
\begin{aligned}
\frac{Q(p)}{R(p)} p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]= & \left(A_{v}+\sum_{r} \frac{A_{r}}{p-p_{r}}\right) p \frac{d}{d p}\left[\frac{Y(p)}{p}\right] \equiv A_{0} p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]+ \\
& +\sum_{r} \frac{1}{p-p_{r}}\left\{p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]\right\}
\end{aligned}
$$

But

$$
\begin{equation*}
A_{0} p \frac{d}{d p}\left[\frac{Y(p)}{p}\right] \div \rightarrow A_{0} y(l) \tag{5}
\end{equation*}
$$

and, by the convolution theorem.

$$
\begin{equation*}
\sum_{r} \prod_{p} \frac{p}{p-p_{r}}\left\{p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]\right\} \rightarrow-\sum_{r} \int_{0}^{t} \tau y(\tau) e^{p_{r}(l-\tau)} d \tau \tag{6}
\end{equation*}
$$

Similarly, if

$$
\begin{equation*}
\frac{P(p)}{R(p)}=B_{0}+\sum_{r} \frac{B_{r}}{p-p_{r}} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{P(p)}{R(p)} p \frac{d^{2}}{d p^{2}}\left[\frac{Y(p)}{p}\right] \div B_{0} t^{2} y(t)+\sum_{r} \int_{0}^{t} \tau^{2} y(\tau) e^{p_{r}(t-\tau)} d \tau \tag{8}
\end{equation*}
$$

Using (4), (5) - (8) yields
$y(t)\left(1-A_{0} t+B_{0} t^{2}\right)=\sum_{r} A_{r} \int_{0}^{t} \tau y(\tau) e^{p_{r}(t-\tau)} d t-\sum_{r} B_{r} \int_{0}^{t} \tau^{2} y(\tau) e^{p_{r}(t-\tau)} d t+\sum_{r} K_{r} e^{p r t}$
This is an integral equation of the Volterra type of the second kind with a degenerate kernel, containing exponential terms.

Everything said here can be easily extended to the case where $R(p)$ has multiple roots.

Example. The equation of Laguerre

$$
t \ddot{y}+(1-t) \dot{y}+n y=0
$$

is, after transformation

$$
\left(p-p^{2}\right) p \cdot \frac{d}{d p}\left[\frac{Y(p)}{p}\right]-p Y(p)+(n+1) Y(p)=0
$$

From this it follows that

$$
p \frac{d}{d p}\left[\frac{Y(p)}{p}\right]=-\frac{p-n-1}{p^{2}-p} Y(p)
$$

But

$$
\frac{p-n-1}{p(p-1)}=\frac{n+1}{p}-\frac{n}{p-1}
$$

and this means that the integral equation is
or

$$
t y(t)=(n+1) \int_{0}^{t} y(\tau) d \tau-n \int_{0}^{t} y(\tau) e^{(t-\tau)} d t
$$

$$
t y(t)=(n+1) \int_{0}^{t} y(\tau) d \tau-n e \int_{0}^{t} y(\tau) e^{-\tau} d t
$$

BIBLIOGRAPHY

1. Doetsch, G., Handbuch der Laplace-Transformation. Bd. 2, Basel und Stuttgart, 1955.
